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With the idea of a broad investigation of the flow behavior of dilute polymer solutions in mind,
the dynamics of polymer chains with rigid constraints and hydrodynamic interactions is formulated
in various equivalent ways. Starting from a very general diffusion equation of polymer kinetic theory,
equivalent stochastic differential equations of motion both in terms of generalized coordinates and
in terms of constraint conditions are derived. Then an efficient Brownian dynamics simulation
algorithm is constructed rigorously, and a convenient expression for evaluating stresses in simulations
is suggested. Furthermore, a modified simulation algorithm, which is appropriate for infinitely stiff

rather than rigid systems, is discussed.

PACS number(s): 51.10.4+y, 05.40.+j, 62.10.+s, 02.50.—r

I. INTRODUCTION

Mechanical models of polymers involving constraints
play an important role in polymer kinetic theory [1]. Al-
though models with constraints often impose fixed bond
lengths or bond angles, they usually do not pretend to
portray details of the chemical structure. The idea is
rather to model molecules which exhibit considerable
rigidity on much larger scales, such as the fashionable
biological macromolecules or liquid crystal polymers.

There exist various delicate problems in modeling rigid
or stiff polymer molecules by mechanical bead-rod-spring
chains. For example, different results are obtained de-
pending on whether bead inertia is neglected before or
after introducing rigid constraints (Fixman [2] follows the
former procedure while kinetic theory [1] implies the lat-
ter one), and rigid chains are different from very stiff
elastic chains even in the limit of infinite stiffness [3].
Moreover, multiplicative noise unavoidably occurs in the
stochastic differential equations of motion for polymer
models with constraints, and the interpretation of the
equations is then ambiguous (this ambiguity is known as
the It6-Stratonovich problem [4,5]). In view of all these
delicacies it may be not surprising that in almost every
paper on models with constraints errors in the previous
literature are pointed out; we here follow that accredited
tradition. In order to be on the safest possible ground we
start from well-founded kinetic theory equations, and we
consistently apply the mathematically rigorous Ité ap-
proach to stochastic calculus to avoid all ambiguities.

In this paper, bead-spring models with constraints and
hydrodynamic interaction are approached in four steps.
First, after introducing some notation (Sec. II), a very
general diffusion equation of polymer kinetic theory is
reformulated as a system of stochastic differential equa-
tions involving generalized coordinates (Sec. III). Second,
from the stochastic equations of motion for the beads
the generalized coordinates are eliminated in favor of
constraint conditions (Sec. IV). Third, a numerical in-
tegration scheme (i.e., a Brownian dynamics simulation
algorithm) is developed for the equations of motion in
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Cartesian coordinates (Sec. V). Fourth, an expression for
the stress tensor which is particularly suitable for simula-
tions is suggested (Sec. VI). A brief summary concludes
the paper (Sec. VII).

II. BASIC NOTATION

Througout this paper, we assume that the constraints
restrict only the internal configurations. It is hence use-
ful to introduce the position vector of bead p with mass
M, (p=1,2,...,N) with respect to the center of mass
by R, := r, —r., where r, is the bead position vector
with respect to an arbitrary point fixed in space and r is
the center of mass position vector, r. := ), M,r,/Mp,
M, := ), M, (by convention, the range of greek sum-
mation indices is always from 1 to N). We allow for beads
having not only different masses M,, but also different
frictional properties described by symmetric friction ten-
sors {,. If the internal motions are restricted by d’ time-
independent constraints then we need d = 3N —3—d’ gen-
eralized coordinates Q1,Q3,...,Qq in order to charac-
terize the internal chain configurations. We assume that
there exist smooth functions R,(Q1,Q2,...,Q4) which
specify the constrained internal configurations in terms
of the generalized coordinates. ’

The influence of the constraints on inertial and fric-
tional effects can most elegantly be described by means
of two metric d X d matrices with components

_ 8R, OR,
8k ‘= ;My 3Q, 0.’ (1)
_ 6R, = OR,
P— —_— . 2
g]k g aQJ Cuu an ’ ( )

which are only defined in the manifold characterized
by the constraints (that is, in the space of constrained

configurations). The tensors {,, account not only for

pv

2696 ©1994 The American Physical Society



50 BROWNIAN DYNAMICS OF RIGID POLYMER CHAINS WITH . ..

the bead friction but also for hydrodynamic interac-
tions. More precisely, we assume that hydrodynamic in-
teractions are described in terms of the tensors £2,, :=
Q(r, —r,) = (R, — R,), where R is a given function
such as the Oseen-Burgers or Rotne-Prager-Yamakawa
tensor [1]. We then introduce the effective friction ten-
sors { . by

z Clw . (5,“:(;1 + nvu') = 5u#' 5, (3)

where 4, is the Kronecker delta and & is the unit ten-
sor. The modified effective friction tensors occurring in
Eq. (2) are defined as

Cuw =Cu = AT -Z-2,, (4)

where Z := uv Suv is the total effective friction ten-
sor and the A, := Z~!. Z“ ¢ are weight tensors with
>, A, = 8. We thus obtain from Eq. (4),

> ¢ =0. (5)

As an immediate but very useful consequence of Eq. (3)
we obtain the identity

ZZ#V ) (Juy’c;l + nv“') = Jm,,l é— A;’l: . (6)
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III. FORMULATION OF STOCHASTIC
DIFFERENTIAL EQUATIONS

The formulation of stochastic differential equations for
the d generalized coordinates which are equivalent to
the diffusion equation (16.2-6) of Ref. [1] is straight-
forward [4,5]. Formulation of the noise terms requires
a decomposition of the diffusion matrix which is not
unique. Rather than looking for a possible representa-
tion of the noise terms involving only d Wiener processes
we here introduce N three-dimensional Wiener processes
W, (3N > d) corresponding to the noise terms for the
individual beads [that is, the time-dependent random
variables W, (t) possess a Gaussian distribution with
(W,L(t)) = 0 and (W, (t) W,(t')) = I,, min(t,t') §].
While this representation leads to unnecessarily compli-
cated noise terms in the equations for the generalized
coordinates, it yields the most natural form of the equa-
tions of motion in Cartesian space. One then needs the
decomposition

Suw €yt + R = Z B,.-BL,, (7)

for all p,p’ = 1,2,..., N, which is independent of the
constraints. When the tensors B, are used to represent
the noise terms, the stochastic differential equations for
the generalized coordinates are

d
dQ; = zz&ik% : {[Z(a,wa A (Fu+F) + Y8, s R,,] dt+v/2ksT Y ¢, - Buw -dw,,}

k=1 p

18 (=
+kpT ﬁ l; TQ}: (ij\/g) dt,

(8)

where the velocity gradients & characterize a given homogeneous flow field of the form vo + x-r, F,, and F,(f) are the
internal interaction and external forces on bead p, kp is Boltzmann’s constant, T' is the absolute temperature, g is
the determinant of g, and G represents the inverse of g;,. With the results of Sec. II, it is straightforward to write
the Fokker-Planck equation associated with Eq. (8) in the form of Eq. (16.2-6) of Ref. [1]. Only the weight tensors
AZ', which we have introduced in front of the force terms, are delicate. For the intramolecular forces this has no effect

since the additional term vanishes when the summation over v is carried out. The same argument applies when F&)
depends only on the internal configuration of the chain. If, however, the external forces depend on the center of mass
position then Eq. (18.2-23) of Ref. [1] implies that the weight tensors need to be introduced in the above manner.

By transforming the equations of motion for the generalized coordinates by means of the It formula [4,5], we obtain
stochastic differential equations for the position vectors R,

dR, =Y H,. {[2(5#'" §=AL)- (F, +F) + 3 8y m R dt+ v2ksT Y Cyy  Buus - qu:}
u' v v

d
1 8 ~ OR
+kgT _— G; —~—") dt, 9
o7 3 Jaoa; (V55 5o ©)

where

d
~ OR, R

H,, = 3 G 2Be OBy (10)
MZ:l 0Q; 0Q
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Derivation of the equations for r, requires additional consideration of the center of mass motion. After a straightfor-
ward generalization of the kinetic theory derivations of Ref. [1] we obtain

w= Pu- { [VO +K-1, + 2(6,,,,, M) (Fu + Ffj’)} dt +/2kpT Y B, -dW,,,}

d
7]
v 68— o dt+kgT > PL .| — Q.. ) -ALdt, 11
+kBT2u:(5u5 A) ;\/_ 50, (fc,kaQ ) +kp #;V’ o (Bru: ) v (11)
where
d
~ OR, OR, =
P =X+ Z Gjk z(5uu’ 6§ —Au)- - “Curw s ZP#V Py =Puu, (12)
7,k=1 u'v! 9Q; 0Qx v
[
is a projection operator and “:” implies a double contrac- d' 8g; 3gk
tion. Note that most of the terms in the second line of Eq. Py, =06 - Z gk Z(‘suu(;l + Qupr) - ar, J, or
(11) are independent of 1 and hence do not contribute k=1 u v
to the internal motions. The consistency of Egs. (9) and (17)
(11) can be checked by means of Eq. (6) and the identity
My here g ts the i f G Note th
Z Syt — ST (13) where g;, represents the inverse of Gji. ote that
P

Pu'v = Z Huu’ : Zu’v .
o

'

M

IV. GENERALIZED COORDINATES VERSUS
CONSTRAINT CONDITIONS

If Eq. (11) is used as a starting point for a simu-
lation then the evaluation of the coefficients requires
an explicit parametrization of the vectors R, in terms
of generalized coordinates. In many applications, and
in particular in simulations [2,3], it is simpler to work
directly with time-independent constraints of the form
g;j(r1,r2,...,ry) =0 for j =1,...,d, where, for exam-
ple, for constrained bond lengths and angles, only two
or three bead positions are involved in each constraint
equation. In general, we assume that only the internal
configurations are constrained, that is,

dg;
Zari B

In the next step, we express all coefficients in Eq. (11)
in terms of the constraint conditions. Again we need two
metric matrices accounting for inertial and frictional ef-
fects, but now these are d’ x d' matrices obtained directly
from the constraint conditions,

(14)

gy

A 1 9g;
- . , 15
G ‘L; M, dr, or, (18)
= g, _ a
ij = glg‘l . (s‘u’cﬂl + npv) : a—ik . (16)
v Lot v

In the course of eliminating all generalized coordinates
from Eq. (11), the projection operator P,, can now be
expressed in the form

Egs. (15)—(17) are not restricted to the space of con-
strained configurations. The equivalence of the expres-
sions (12) and (17) in the space of constrained configu-
rations can be shown by comparing

R,
;PMV'sa ;Pm/' —B—QJ—"

g
or, ’

Y P (Bt + )

vv'!

(18)

corresponding to checking the equivalent action on d +
d’ + 3 = 3N independent base vectors. In the absence
of hydrodynamic interaction, the linear independence of
the base vectors follows from the assumption that the d’
constraints are independent, that is, that 3N —3—d' gen-
eralized coordinates are sufficient for characterizing the
internal configurations. The linear independence must
then hold also for weak hydrodynamic interaction and
hence constitutes the generic case. In evaluating the ex-
pressions (18) with P, given by Egs. (12) and (17), the
differentiation rule,

S o o=
ar, an ’

(19)

and Eqgs. (6) and (14) are very useful.

What remains to be done is to eliminate the second-
order derivative terms with respect to generalized coordi-
nates from Eq. (11). As one should expect for a sensible
formulation of the dynamics of models with constraints,
this term is independent of the choice of generalized co-
ordinates. Inspired by a very common and helpful pro-
cedure in the general theory of relativity, namely, the
introduction of locally inertial coordinates [6], we choose
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a set of generalized coordinates in which this term can be
handled most conveniently so that a relationship with the
constraint conditions can readily be established. More
precisely, we intraduce generalized coordinates such that
at a given point of the space of constrained configurations
the following conditions hold:

8ikx = ij s (20)

R, BR
M, =0. 21
Z “8Q;0Qk 9Q: (21)

When the generalized coordinates satisfy Eq. (21), one
can derive the explicit representation

J
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R, 8%g, R,
Z gln - 9r .Or : F)
BQJBQ,, In=1 o BQJ 1'“! u! Qk
1 Og
_— 22
3 P (22)
where g, represents the inverse of Cjk. The repre-

sentation (22) is the key to eliminating the second-
order derivative terms with respect to generalized coor-
dinates from Eq. (11). For a coordinate system satis-
fying Eq. (21), the derivatives of g vanish; the deriva-
tives of E,-,,, when expressed in terms of the derivatives
of its inverse (2), do not only lead to terms involving
0°R,,/0Q;0Q; but also to additional derivatives of mod-
ified effective friction tensors and hence of £2,,,-. By com-
bining these results, we finally obtain

dry=3"P,,- { [vo+kom 43 (B €5 + V) - (Fur + FS) + )] dt + v/2k5T Y B, - quf}

dl
_ 8%g; OR
1

_kBTZ; 3> [P,,#. (Bt + n,,,,,.)] o D 3g: dt (23)

i=1lp'vy! view

9%g; R, a2

—kBTzl Z P“” (6“, ! C + ﬂ,‘ ! ) arulaj‘ru 6 : (BT“, n,,,,!) P“VI dt .

i=1pu'vy! u'vv!

In this equation we have introduced an extra force due
to the constraints which depends on the determinant G
of the metric matrix ij,

a
= kBT . InG. (24)

Tu

F(m)

Equation (23), together with the representation (17) for
P,,,, constitutes the desired reformulation of Eq. (11) in
which generalized coordinates are eliminated in favor of
the constraint conditions.

V. NUMERICAL INTEGRATION SCHEMES

There are several possibilities for simulating models
with constraints. One possibility is based on the numeri-
cal integration of the stochastic differential equations for
the generalized coordinates Q;. However, this possibility
is feasible only if the number of generalized coordinates
involved is small, that is, for almost rigid molecules. If
there are many internal degrees of freedom and hence
many generalized coordinates then, in general, handling
of them is too complicated. For this situation we con-
struct in the next step a numerical integration scheme for
Eq. (23) which rigorously satisfies the constraints and is
very well suited for Brownian dynamics simulations.

If the bead positions at some initial time are given by
7, then the positions after a time step of width At are
constructed in two steps. First an unconstrained move is
taken to calculate the auxiliary positions

[

T,=7r,+ [vo+n-r,,

+ Y (G € + ) - (Fo + FO) + F)| e
+v2ksT > By, -AW,, (25)

where B,, was introduced in Eq. (7) and AW, is
the increment of the Wiener process W, for the time
step under consideration (that is, the AW, for all time
steps are independent Gaussian random variables with
(AW ,) =0and (AW, AW ,) =§,,0At). All the coef-
ficients in Eq. (25) are evaluated with the configuration
at the beginning of the time step. Then, the final bead
positions are obtained as

v =Ty —Z'Yn E(‘S#VC + Q) - 39; » (26)

where []. indicates that the corresponding term is evalu-
ated at the positions (1 —c¢)r, + c¥, with ¢ € [0,1]. The
set of Lagrange multipliers -y; is to be determined such
that all the constraints are satisfied rigorously, that is,
9;(F1,72,...,7N) = 0.

In order to derive the stochastic differential equation
corresponding to the iteration scheme in Egs. (25) and
(26) we need the contributions to v; which are of order
(At)}/2 and At. The precise form of these contributions
can be obtained by expanding g;(¥1,72,...,7n). If the
results are combined with Egs. (25) and (26) then it is
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found that the above procedure provides a numerical in-
tegration scheme for Eq. (23) provided that ¢ = 1/2. The
convergence of arbitrary averages is of first order in time
step width. The choice ¢ = 1/2 is crucial for obtaining
terms involving derivatives of hydrodynamic-interaction
tensors.

In the absence of hydrodynamic interactions and for
identical beads with isotropic friction tensors one has

0%g;
kBTZ ; Br,,:ajr,, ’ 8gj

so that the first term in the last line of Eq. (23) can-

cels the term involving F") [4]. In this situation, a
valid simulation algorithm is obtained when the metric
force F,(:,") in Eq. (25) is omitted and Eq. (26) is used
with ¢ = 0. Such an algorithm was employed by Liu for
Kramers chains [7]. The SHAKE-HI algorithm suggested
in Ref. [8] corresponds to setting ¢ = 0 and neglecting

=F, (27)

F,(,',n) even in the presence of hydrodynamic interactions;
in general, this algorithm does not reproduce the corre-
sponding kinetic theory models.

The Lagrange multipliers v; in Eq. (26) must be deter-
mined from a set of nonlinear equations and hence need
to be calculated by an iterative procedure. For exam-
ple, one can construct an iteration scheme by writing the
constraints in the form

d'

% =%+ ) Bkl 96(F1Ta 0 EN) (28)
k=1

where ¢’ € [0,1]. Starting with v; = 0, successive ap-
proximations for vy; can be generated by evaluating the
right-hand side of Eq. (28) with the current approximate
Lagrange multipliers -y; until all constraints are satisfied
within a specified tolerance [the vectors T, depend on v;
according to the definition (26)]. Note that g, needs
to be calculated only once in this iterative procedure.
Liu [7] observed rapid convergence when he employed
a special case of this iterative scheme in a simulation
of Kramers chains. Fixman [2] had previously used the
same idea for solving the quadratic constraint equations
for models with fixed bond lengths and bond angles. The
fact that Gj typically has a narrow band structure can
be exploited to design very efficient algorithms for calcu-
lating metric forces and Lagrange multipliers [2].

A well-known alternative for solving the set of nonlin-
ear equations for the Lagrange multipliers is used in the
SHAKE-HI algorithm [8]. In that approach, only one La-
grange multiplier v; is determined at a time, such that
the corresponding constraint g; = 0 is enforced. Since the
enforcement of a particular constraint partially destroys
constraints that were enforced previously, it is necessary
to repeat the cycle of enforcing all constraints until all
constraint equations are satisfied with the specified tol-
erance [8].

We conclude the description of our simulation algo-
rithm with some heuristic or mnemonic remarks. The
unconstrained move (25) is of the It6 type because all co-
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efficients are evaluated at the beginning of the time step.
It can be shown that the It6 approach is most natural
for models with hydrodynamic interaction [4]. There-

fore, only the occurrence of the metric forces F{™ needs
to be justified. To this end, it is important to realize that
the metric force defined in Eq. (24) is exactly the nega-
tive of the corrective force which needs to be applied in
order to make a rigid system behave like a very stiff sys-
tem when bead inertia is taken into account in evaluating
the constraint forces (in Ref. [3], this was shown only in
the absence of hydrodynamic interaction; the arguments
of Ref. [9] suggest that the compensation of metric and
corrective forces is not affected by hydrodynamic inter-
action). In other words, if the forces F{™ in Eq. (25)
are omitted then we obtain a simulation of an infinitely
stiff system; the truly rigid system necessitates the oc-
currence of the metric forces FU™ in the unconstrained
move. In this sense, it is slightly easier to simulate in-
finitely stiff rather than rigid systems, and the simula-
tion algorithm for infinitely stiff systems appears to be
more natural. Use of ¢ = 1/2 in Eq. (26) corresponds to
a Stratonovich-type restoration of constraints; one may
thus think of the mechanism for restoring constraints as
being governed by the rules of deterministic calculus. It
is most remarkable that these simple heuristic arguments
on the level of a simulation algorithm reproduce the full
complexity of the kinetic theory equations (11) or (23).

VI. STRESS TENSOR

In the final step we show how the stress temsor can
be evaluated in a Brownian dynamics simulation. As for
obtaining the diffusion equation, we rely on kinetic the-
ory for obtaining the appropriate stress tensor for gen-
eral bead-rod-spring models. Starting from the modified
Kramers expression for the stress tensor, Eq. (16.3-11) of
Ref. [1], one can derive for only one polymer species

=Y (Rul (4
8= (Puu)
+ 5 (repL (o) G @

pp've!

—N.-Ry)>

—np kT

In this equation, A, is the drift velocity associated with
R, ; this deterministic contribution to dR, /dt can be ob-
tained in terms of generalized coordinates or constraint
conditions by neglecting the noise terms in Egs. (11) or
(23), respectively, and by subtracting the center of mass
contribution to the drift velocity. For example, we ob-
tain the drift velocity in terms of generalized coordinates
from Eq. (11) [or directly from Eq. (9)],
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T e
AT) - (F, +FL)

= ZH#M' : [2(5":,,5 -
u' v
+ZE“:,,-K.-R,,]

hat 3 viag; (V8

B ggr) . @)
7,k=1

The combination A, — k- R, occurring in the first term
of Eq. (29) may then be interpreted as a convected drift
derivative of R,,.

Some comments on the limitations and usefulness of
this expression for the stress tensor seem to be appropri-
ate. While the incorporation of external forces into the
equations of motion is very natural, their presence is more
problematic for the stress tensor. The deeper reason for
this problem is that, in general, external forces lead to
inhomogeneous concentrations. Since the kinetic theory
in Ref. [1] is limited to homogeneous systems, Eq. (29)
can safely be used only if the total external force on each
molecule vanishes. The fact that external forces do not
explicitly occur in Eq. (29) might indicate that this ex-
pression could also be useful in the presence of arbitrary
external forces. The last term in Eq. (29) vanishes if hy-
drodynamic interactions are absent (or if they are treated
by some averaging approximation). The term involving
the projection operators P, implies that the constraints
can lead to anisotropic momentum exchange due to in-
ternal bead motions.

In a numerical integration scheme the drift velocity

A, in Eq. (29) may be replaced by the discrete approxi-
mation [R,(t + At) — R, (t)]/At, provided that all other
terms in the average involving the drift velocity are evalu-
ated at time ¢. This statement follows from the fact that,
except for terms that vanish as At — 0, the difference be-
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tween these expressions is proportional to increments of
the Wiener process which are independent of the polymer
cenfigurations at time ¢ and hence vanish after averaging.

VII. SUMMARY

In summary, we have shown (i) how the general diffu-
sion equation for polymer molecules with constraints and
hydrodynamic interaction can be reformulated as a sys-
tem of stochastic differential equations, (ii) how rigorous
Brownian dynamics simulation algorithms can be con-
structed after eliminating generalized coordinates, and
(iii) how stresses can be evaluated in simulations.

The simulation algorithm derived here for polymer
molecules with hydrodynamic interaction in the pres-
ence of rigid constraints can easily be modified to treat
infinitely stiff rather than rigid systems; the algorithm
then actually takes a slightly more natural form. The
algorithms for either case deviate from the SHAKE-HI al-
gorithm which has previously been used in the literature
in order to simulate polymer molecules with constraints
and hydrodynamic interaction. Even though the simula-
tion algorithms for infinitely stiff and rigid systems and
other algorithms considered in the literature may give
qualitatively the same results it should be emphasized
that the simulations developed here constitute a rigorous
tool for treating well-defined kinetic theory models.
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